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Note: this is only a draft of the solutions discussed on Friday and might contain some typos or more or less
imprecise statements. If you find some, please let me know.

Ex. 1 (additional)

Let A = {A1, A2, A3} be non-empty sets that form a partition of a set Ω. Write down all elements of σ(A).

Let B1, B2 be two subsets of such that B1 ∩ B2 and (B1 ∪ B2)C are non-empty. Write down all elements of
σ({B1, B2}).

Note: in this exercise it is worth drawing a picture of the sets in question.

Recall definition 1.1.1. of a σ-algebra.

Def. 1.1.1. Let Ω 6= ∅ and let F be a collection of subsets of Ω. Then F is called a σ-algebra (σ-field) if:

(i) ∅ ∈ F ,

(ii) A ∈ F ⇒ AC ∈ F ,

(iii) A1, A2, · · · ∈ F ⇒
⋃∞

i=1Ai ∈ F .

Moreover, for C ⊂ Ω we defined σ(C) as a minimal σ-algebra containing C, called a σ-algebra generated by
C, i.e. the intersection of all σ-algebras containing C.

A partition of a set Ω is a collection of its subsets {Si}i∈I , with I being some index set, such that
⋃

i∈I Si = Ω
and Si∩Sj = ∅, ∀i 6= j. Hence, since A is a partition of Ω, we know that a complement of any set created using
the sets from A is just a sum of the remaining set from A, e.g. AC

1 = A2 ∪A3 or (A1 ∪A2)C = A3. Thus

σ(A) = {∅,Ω, A1, A2, A3, A1 ∪A2, A1 ∪A3, A2 ∪A3} .

Next, since B1 ∩B2 6= ∅ and (B1 ∪B2)C 6= ∅, we have

σ({B1, B2}) =
{
∅,Ω, B1, B

C
1 , B2, B

C
2 , B1 ∩B2, (B1 ∩B2, )

C , B1 ∪B2, (B1 ∪B2)C
}
.

Ex. 2 (additional)

Let Ω be a nonempty set and let for each i in some (index) set I Fi be a σ-algebra on Ω. Let C be some collection
of subsets of Ω. In alternative wordings compared to Section A.2, but in content the same, we define σ(C) to be
the smallest σ-algebra that contains C, i.e. the intersection of all σ-algebras that contain C.

(a) Show that
⋂

i∈I Fi (the intersection of all σ-algebras Fi) is a σ-algebra.

Denote the intersection in question by F , i.e.

F :=
⋂
i∈I
Fi = {A ⊂ Ω : A ∈ Fi, ∀i ∈ I} .

We simply need to check that F satisfies three properties from the definition of a σ-algebra.
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(i) ∅
?
∈ F

Since each Fi is a σ-algebra, it has to contain the empty set, i.e. ∅ ∈ Fi, ∀i ∈ I. Thus, by
construction, ∅ ∈ F , so (i) - checked;

(ii) A ∈ F ?⇒ AC ∈ F
Let A ∈ F , which means ∀i ∈ I we have A ∈ Fi. Similarly as above, since each Fi is a σ-algebra,
together with a set A, it has to contain its complement AC . Thus, AC ∈ Fi ∀i ∈ I, which means
that, indeed, AC ∈ F , so (ii) - checked.

(iii) A1, A2, · · · ∈ F
?⇒
⋃∞

j=1Aj ∈ F
Let A1, A2, · · · ∈ F . As previously, we have A1, A2, · · · ∈ Fi, ∀i ∈ I, and, again, since all Fi are
σ-algebras, they are closed under countable sums, meaning that

⋃∞
j=1Aj ∈ Fi, ∀i ∈ I. Hence,⋃∞

j=1Aj ∈ F , which means that we have also checked (iii).

(b) Why is there is at least one σ-algebra that contains C?

Recall the two “extreme” examples of σ-algebras: {∅,Ω} - the smallest σ-algebra and 2Ω - the power set
of Ω (the set of all subsets of Ω). Obviously, C needs to be contained in the latter σ-algebra, i.e. C ⊂ 2Ω.

(c) Here we take Ω = R. Argue that B(R) is equal to σ(C), where C = {(−∞, a], a ∈ R}.
Recall that we have defined B(R), the Borel σ-algebra on the real line, as a σ-algebra generated by
all open intervals on R, call them G := {(a, b) ⊂ R : a < b, a, b ∈ R}, i.e. B(R) = σ(G). In other words,
to get the Borel subsets of R start with the open intervals (a, b) ⊂ R, and add all other sets that are
necessary in order to have a σ-algebra1.

Because we think of sets that can be generated (using the allowed σ-algebra operations) from all open
intervals, to show the statement in question we need to show that the same sets can be “generated” out
of the right-closed semi-lines using the same operations.

Because always C ⊂ σ(C) we have that all our right-closed semi-lines are in σ(C). Take one such a semi-line
(−∞, b] and we need its complement, (b,∞) to also sit in σ(C). Next, when we take an intersection of two
semi-lines, say (−∞, b] and (a,∞), with a < b, we have that an open-closed intervals (a, b] need to be in
σ(C) as well.

Now, let us consider countable operations. We, have

(a, b) =

∞⋃
i=1

(
a, b− 1

n

]
,

[a, b] =

∞⋂
i=1

(
a− 1

n
, b

]
,

[a, b) =

∞⋃
i=1

[
a, b− 1

n

]
,

so we can generate out of intervals (a, b] any intervals we wish using only countable unions and intersection.
In particular, we can generate all open intervals, which are generators of the Borel σ-algebra on R.
Therefore, we can conclude that σ(C) = B(R).

(d) Consider a function X : Ω → R. Let C be a collection of subsets of R that is such that σ(C) = B(R).
Suppose that all sets {X ∈ C} (for C ∈ C) belong to a σ-algebra F on Ω. Show that X is a random
variable (Definition 1.1.5).

Recall definition 1.1.5 of a random variable.

Def. 1.2.1. Let (Ω,F ,P) be a probability space. A random variable is a real-valued function X defined
on Ω with the property that for every Borel subset B of R, the subset of Ω given by

{X ∈ B} = {ω ∈ Ω : X(ω) ∈ B}

is in the σ-algebra F .

Hence, we need to show that a preimage of any Borel B under the function X, i.e. {X ∈ B}, is F-
measurable.

To start with, define
D = {B ⊂ R : {X ∈ B} ∈ F} ,

the collection of all subsets of the real line which are F-measurable. Notice that D is a σ-algebra. Indeed,

1Recall, σ-algebras are closed under taking of complements and countable sums, and, consequently, countable intersections.
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(i) ∅
?
∈ D
{X ∈ ∅} = ∅, which naturally is in F on Ω, as F is a σ-algebra and so needs to contain ∅; so (i) -
checked;

(ii) B ∈ D ?⇒ BC ∈ D
let B ∈ D, which means that {X ∈ B} ∈ F ; because F is a σ-algebra it has to contain {X ∈ B}C =
{X 6∈ B} = {X ∈ BC}, so we end up with BC ∈ D, so (ii) - checked;

(iii) B1, B2, · · · ∈ D
?⇒
⋃∞

i=1Bi ∈ D
let B1, B2, · · · ∈ D meaning that {X ∈ B1}, {X ∈ B2}, · · · ∈ F ; since F is a σ-algebra we know that⋃∞

i=1{X ∈ Bi} ∈ F , so that
⋃∞

i=1Bi ∈ D and (iii) is also checked.

Next, recall the lemma from the lecture:

Lemma: Let D be σ-algebra on Ω 6= ∅ and let C be some collection of subsets of Ω such that C ⊂ D.
Then, σ(C) ⊂ D.

Because we assumed that {X ∈ C} ∈ F , ∀C ∈ C, we know that C ⊂ D and, by the lemma, σ(C) ⊂ D.
Moreover, by assumption, σ(C) = B(R), which means B(R) ⊂ D. However, necessarily, D ⊂ σ(C) = B(R).
Therefore, we arrive at

B(R) ⊂ D ⊂ B(R),

which means D = B(R), i.e. the sets which are F-measurable under the function X are basically all Borel
sets. And this is the requirement for X to be a random variable, which completes the proof.

(e) Suppose that for all a ∈ R the set {X ≤ a} is an element of F . Show that X is a random variable.

We need to show that if all the subsets of R of the form (−∞, a], i.e. right-closed semi-lines, are F-
measurable, then so do all the Borel sets B ∈ B(R). But this follows from the discussion above2 and from
the fact that F-measurability means belonging to the σ-algebra F (which is closed under the required
operations).

For instance, consider {X ≤ a} ∈ F . Then, also {X ≤ a}C = {X > a} ∈ F . And so does

{X ≤ b} ∩ {X > a} = {X ∈ (a, b]} ∈ F ,

for a < b. And we can proceed as in (c). Finally, notice that as a σ-algebra, F has to contain ∅, which is
a preimage of the empty set, i.e. {X ∈ ∅} = ∅ ∈ F .

(f) Suppose that for all a ∈ R the set {X < a} is an element of F . Is X a random variable?

Yes, it is and the reasoning is similar to the one above, in (e).

Ex. 3 (additional)

Let µX be the distribution of a random variable X, see Definition 1.2.3. Show that µX is probability measure
on the Borel sets of R.

First, recall definition 1.1.2 of the probability measure.

Def. 1.1.2. Let Ω 6= ∅ and let F be a σ-algebra of subsets of Ω. A probability measure P is a function that, to
every set A ∈ F , assigns a number in [0, 1], called the probability of A and written P(A) such that

(i) P(Ω) = 1,

(ii) (countable additivity) whenever A1, A2, . . . is a sequence of disjoint sets in F , then

P

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

P(Ai).

The triple (Ω,F ,P) is called a probability space.

Next, recall definition 1.2.3 of the distribution measure.

Def. 1.2.3. Let X be a random variable on a probability space (Ω,F ,P). The distribution measure of X is the
probability measure µX that assigns to each Borel subset B of R the mass µX(B) = P({X ∈ B}).

So we have to check that µX satisfies the two properties required for being a probability measure.

2Cf. (c) and B(R) = σ(C), with C = {(−∞, a), a ∈ R}.

3



(i) µX(R) = P({X ∈ R}) = P(Ω) = 1; (i)-checked.

(ii) (countable additivity) Let B1, B2, · · · ∈ B(R), Bi ∩Bj = ∅, ∀i 6= j. Then,

µX

( ∞⋃
i=1

Bi

)
= P

({
X ∈

∞⋃
i=1

Bi

})
= P

( ∞⋃
i=1

{X ∈ Bi}

)
=

∞∑
i=1

P ({X ∈ Bi}) =

∞∑
i=1

µX(Bi),

so (ii)-checked.

Hence, we have shown that, indeed, the distribution measure µX is a probability measure.

Ex 1.5 (Shreve)

When dealing with double Lebesgue integrals, just as with double Riemann integrals, the order of integration
can be reversed. The only assumption required is that the function being integrated be either nonnegative or
integrable. Here is an application of this fact.
Let X be a nonnegative random variable with cumulative distribution function F (x) = P{X ≤ x}. Show that

EX =

∫ ∞
0

(1− F (x))dx

by showing that ∫
Ω

∫ ∞
0

1[0,X(ω))](x)dxdP(ω) (1)

is equal to both EX and
∫∞

0
(1− F (x))dx.

We assume that X ≥ 0, so, according to what we are given in the exercise3, we can reverse the order of
integration in (1) and rewrite it as follows∫

Ω

∫ ∞
0

1[0,X(ω))](x)dxdP(ω) =

∫ ∞
0

∫
Ω

1[0,X(ω))](x)dP(ω)dx. (2)

Then, the left hand-side (LHS) in (2) becomes∫
Ω

∫ ∞
0

1[0,X(ω))](x)dxdP(ω) =

∫
Ω

∫ X(ω)

0

dxdP(ω)
(∗)
=

∫
Ω

X(ω)dP(ω) = EX,

where the last step is due to the definition of the expected value of X. Notice that in (∗) we calculate the inner
integral for a fixed ω and integrate over x’s.

Next, the right hand-side (RHS) in (2) can be expressed as∫ ∞
0

∫
Ω

1[0,X(ω))](x)dP(ω)dx =

∫ ∞
0

∫
Ω

1x≤X(ω)dP(ω)dx

(∗∗)
=

∫ ∞
0

P(x ≤ X)dx

=

∫ ∞
0

[1− P(X < x)]dx

=

∫ ∞
0

[1− F (x)]dx,

where the last step comes from the definition of the cumulative distribution function. Now, while tackling the
inner integral in (∗∗) we have fixed x and integrated over ω’s.

Hence, we have shown that

EX = LHS = RHS =

∫ ∞
0

[1− F (x)]dx,

which is the desired result.

3Which is basically Fubini’s theorem.
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